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Critical exponents of directed self -avoiding walks 

John L Cardy 
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Received 21 April 1983 

Abstract. It is argued that directed self-avoiding random walks are in the same universality 
class as directed unrestricted random walks, and therefore should exhibit mean-field 
exponents y = 1, v,l= 1, v, = $ in all dimensionalities. 

In a recent letter, Chakrabarti and Manna (1983) have introduced the problem of 
directed self-avoiding random walks (SAW), and discussed some exact and numerical 
results in two dimensions. In this note we formulate the field-theoretic description 
of this problem, in analogy with the work of de Gennes (1972) on the ordinary SAW, 
and show that it has simplifying features which imply that the critical exponents are 
mean-field like for all dimensionalities. 

In the directed problem, there is a preferred direction (labelled by a coordinate 
q), and walkers are allowed to proceed only in the direction of increasing q. (In fact, 
the problem where walkers can also move in the opposite direction, but steps with 
S q > O  and SrlICO have unequal weight, will be in the same universality class.) Let 
GN(r )  be the number of such SAW from the origin to r with N steps, and introduce 
the generating function 

m 

G ( r , x ) =  1 GN(r)xN. (1) 
N = O  

This may be written as an integral over an n-component complex field qa( r ) :  

where 
2 

S =  r,r',a 1 q ~ ( r ) ~ 0 ~ ( r - f f ) q ~ ( r ~ ) + ~ 1  r a  ( ~ q ~ ( r ) q a ( r ) )  . (3) 

The quartic term provides a repulsive potential, and the limit n + 0 eliminates closed 
loops, as usual. The Fourier transform of the bare propagator Go has the form, in 
the long-wavelength limit, 

(4) 
where the ci are constants dependent on x and the lattice structure. For ordinary 
SAW, c2  = 0, and we regain the result of de Gennes (1972), since the n-component 
complex field is equivalent to a 2n-component real field. 

The massless limit of the field theory (3), when the renormalised value of c 1  
vanishes, occurs when x =xc, the value at which (1) diverges. When c2#0 ,  the 

G 0' ( k  ) = c - ic2kll + c3k + c4k + . . . 
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perturbation expansion may be expressed in terms of advanced and retarded propa- 
gators: Go = GEdV + G r t ,  where 

GF' ==(- ic2kl l+~~+c~k: ) -~  ( 5 )  

in the limit where c1 is small. We see that only the retarded propagator becomes 
massless when cl+O. But the loop corrections to the full correlation function (2) 
must involve at least the advanced propagator in each loop, and so they are always 
infrared finite even as c l+O.  Hence the interaction term uo is irrelevant and we 
should always observe mean-field exponents. Physically, this is because the over- 
whelming majority of directed walks will never approach self-intersection. 

According to ( 5 )  then, asymptotically, 

where the renormalised values of cl,  c2, c4 are implied, so that c lock  - x J .  From (7) 
the mean-field exponents may be obtained. We see that G(k = 0 ) a  ( x  - x C ) - l ,  so 
y = 1, in agreement with Chakrabarti and Manna (1983). However, in discussing the 
average end-to-end distance of the walks one must distinguish two length scales, as 
in directed percolation (Cardy and Sugar 1980) and in directed animals (Redner and 
Yang 1982). The end-to-end distance parallel and perpendicular to the preferred 
direction should scale as Null and N'I respectively, where, from (7), VI) = 1, v i  = 5. 
Chakrabarti and Manna (1983) do not make such a distinction, and obtain an 
intermediate value, which, in the context of our theory, must only be an effective 
exponent. 

Finally, we note that while the asymptotic behaviour of G N ( r )  is trivial in this 
model, other quantities are more interesting. For example, the number of distinct 
pairs of SAW from 0 to r, with a total of N steps, G $ ) ( r ) ,  is related to the correlation 
function (cp l(r)q&)q T(O)cpi(O)), which in the limit in which only the retarded piece 
of the propagator is kept, is represented by the sum of diagrams shown in figure 1. 

1 

Figure 1. Diagrams contributing to G"'(r, x) .  The replica index structure is not indicated. 

We then find 

where D is the number of transverse dimensions. This yields the total number of 
such pairs, ZpGE)(r) -xFNNV2-' where y 2  = -10/2 - 11 for D # 2. When D = 2, the 
asymptotic behaviour is xiN/N(ln N)'.  
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